On vertices enforcing a Hamiltonian cycle

نویسندگان

  • Igor Fabrici
  • Erhard Hexel
  • Stanislav Jendrol
چکیده

A nonempty vertex set X ⊆ V (G) of a hamiltonian graph G is called an H-force set of G if every X-cycle of G (i.e. a cycle of G containing all vertices of X) is hamiltonian. The H-force number h(G) of a graph G is defined to be the smallest cardinality of an H-force set of G. In the paper the study of this parameter is introduced and its value or a lower bound for outerplanar graphs, planar graphs, k-connected graphs and prisms over graphs is determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Conditions for k-ordered Hamiltonian Graphs

We show that in any graph G on n vertices with d(x) + d(y) ≥ n for any two nonadjacent vertices x and y, we can fix the order of k vertices on a given cycle and find a hamiltonian cycle encountering these vertices in the same order, as long as k < n/12 and G is d(k + 1)/2e-connected. Further we show that every b3k/2cconnected graph on n vertices with d(x) + d(y) ≥ n for any two nonadjacent vert...

متن کامل

Hamiltonian paths and cycles in hypertournaments

Given two integers n and k, n ≥ k > 1, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, |V | = n and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V , A contains exactly one of the k! k-tuples whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament. A path is a sequence v1a1v2a2v3...vt−1at−1vt of disti...

متن کامل

Hamiltonian chordal graphs are not cycle extendible

In 1990, Hendry conjectured that every Hamiltonian chordal graph is cycle extendible; that is, the vertices of any non-Hamiltonian cycle are contained in a cycle of length one greater. We disprove this conjecture by constructing counterexamples on n vertices for any n ≥ 15. Furthermore, we show that there exist counterexamples where the ratio of the length of a non-extendible cycle to the total...

متن کامل

On 3-regular 4-ordered graphs

A simple graph G is k-ordered (respectively, k-ordered hamiltonian), if for any sequence of k distinct vertices v1, . . . , vk of G there exists a cycle (respectively, hamiltonian cycle) in G containing these k vertices in the specified order. In 1997 Ng and Schultz introduced these concepts of cycle orderability and posed the question of the existence of 3-regular 4-ordered (hamiltonian) graph...

متن کامل

Distributing vertices on Hamiltonian cycles

Let G be a graph of order n and 3 ≤ t ≤ n4 be an integer. Recently, Kaneko and Yoshimoto provided a sharp δ(G) condition such that for any set X of t vertices, G contains a hamiltonian cycle H so that the distance along H between any two vertices of X is at least n/2t. In this paper, minimum degree and connectivity conditions are determined such that for any graph G of sufficiently large order ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2013